Selamat pagi sahabat cerita, pada kesempatan kali ini admin akan berbagi ilmu konversi bilangan. Pasti diantara kalian ada yang lupa atau belum paham dengan konversi bilangan. Oke, jadi langsung saja simak pembahasannya dibawah ini ya. Jangan lupa kumpulkan niat dan berdoa sebelum mulai ya.
Bilangan desimal adalah bilangan yang menggunakan 10 angka mulai 0 sampai 9 berturut2. Setelah angka 9, maka angka berikutnya adalah 10, 11, 12 dan seterusnya. Bilangan desimal disebut juga bilangan berbasis 10.
Contoh penulisan bilangan desimal : 1710. Ingat, desimal berbasis 10, maka angka 10-lah yang menjadi subscript pada penulisan bilangan desimal.
Bilangan biner adalah bilangan yang hanya menggunakan 2 angka, yaitu 0 dan 1. Bilangan biner juga disebut bilangan berbasis 2. Setiap bilangan pada bilangan biner disebut bit, dimana 1 byte = 8 bit.
Contoh penulisan : 1101112.
Bilangan oktal adalah bilangan berbasis 8, yang menggunakan angka 0 sampai 7. Contoh penulisan : 178.
Bilangan heksadesimal, atau bilangan heksa, atau bilangan basis 16, menggunakan 16 buah simbol, mulai dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F merupakan simbol untuk 10 sampai 15.
Contoh penulisan : C516.
Bilangan desimal yang akan dikonversi ke biner
Misalkan bilangan desimal yang ingin saya konversi adalah 2510.
Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :
25 : 2 = 12,5
Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :
25 : 2 = 12 sisa 1.
12 : 2 = 6 sisa 0.
6 : 2 = 3 sisa 0.
3 : 2 = 1 sisa 1.
1 : 2 = 0 sisa 1.
0 : 2 = 0 sisa 0
Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012
Konversi bilangan desimal ke oktal.
Proses konversinya mirip dengan proses konversi desimal ke biner, hanya saja kali ini pembaginya adalah 8. Misalkan angka yang ingin saya konversi adalah 3310. Maka :
33 : 8 = 4 sisa 1.
4 : 8 = 0 sisa 4.
0 : 8 = 0 sisa 0
Maka hasilnya adalah 41
Konversi desimal ke heksadesimal
Misalkan bilangan desimal yang ingin saya ubah adalah 24310. Untuk menghitung proses konversinya, caranya sama saja dengan proses konversi desimal ke biner, hanya saja kali ini angka pembaginya adalah 16. Maka :
243 : 16 = 15 sisa 3.
15 : 16 = 0 sisa F. —-> ingat, 15 diganti jadi F..
0 : 16 = 0 sisa 0
maka hasil konversinya adalah F316
Konversi bilangan biner ke desimal
Proses konversi bilangan biner ke bilangan desimal adalah proses perkalian setiap bit pada bilangan biner dengan perpangkatan 2, dimana perpangkatan 2 tersebut berurut dari kanan ke kiri bit bernilai 20 sampai 2n. Langsung saja saya ambil contoh bilangan yang merupakan hasil perhitungan di atas, yaitu 110012. Misalkan bilangan tersebut saya ubah posisinya mulai dari kanan ke kiri menjadi seperti ini.
1
0
0
1
1
Nah, saatnya mengalikan setiap bit dengan perpangkatan 2. Ingat, perpangkatan 2 tersebut berurut mulai dari 20 sampai 2n, untuk setiap bit mulai dari kanan ke kiri. Maka :
1 ——> 1 x 20 = 1
0 ——> 0 x 21 = 0
0 ——> 0 x 22 = 0
1 ——> 1 x 23 = 8
1 ——> 1 x 24 = 16 —> perhatikan nilai perpangkatan 2 nya semakin ke bawah semakin besar
Maka hasilnya adalah 1 + 0 + 0 + 8 + 16 = 2510.
Konversi bilangan biner ke oktal
Untuk merubah bilangan biner ke bilangan oktal, perlu diperhatikan bahwa setiap bilangan oktal mewakili 3 bit dari bilangan biner. Maka jika kita memiliki bilangan biner 1101112 yang ingin dikonversi ke bilangan oktal, langkah pertama yang kita lakukan adalah memilah-milah bilangan biner tersebut, setiap bagian 3 bit, mulai dari kanan ke kiri, sehingga menjadi seperti berikut :
110 dan 111
Sengaja saya buat agak berjarak, supaya lebih mudah dimengerti. Nah, setelah dilakukan proses pemilah2an seperti ini, dilakukan proses konversi ke desimal terlebih dahulu secara terpisah. 110 dikonversi menjadi 6, dan 111 dikonversi menjadi 7. Hasilnya kemudian digabungkan, menjadi 678, yang merupakan bilangan oktal dari 1101112
Konversi bilangan biner ke heksadesimal
misalnya saya ingin ubah 111000102 ke bentuk heksadesimal. Proses konversinya juga tidak begitu rumit, hanya tinggal memilahkan bit2 tersebut menjadi kelompok2 4 bit. Pemilahan dimulai dari kanan ke kiri, sehingga hasilnya sbb : 1110 dan 0010
Nah, coba lihat bit2 tersebut. Konversilah bit2 tersebut ke desimal terlebih dahulu satu persatu, sehingga didapat :
1110 = 14 dan 0010 = 2
Dengan demikian, hasil konversinya adalah E216.
Seperti tadi juga, gimana kalau bilangan binernya tidak berjumlah 8 bit? Contohnya 1101012? Yaa…Seperti tadi juga, tambahin aja 0 di depannya. Tidak akan memberi pengaruh apa2 kok ke hasilnya. Jadi setelah ditambah menjadi 00110101
Bilangan biner adalah bilangan yang hanya menggunakan 2 angka, yaitu 0 dan 1. Bilangan biner juga disebut bilangan berbasis 2. Setiap bilangan pada bilangan biner disebut bit, dimana 1 byte = 8 bit.
Contoh penulisan : 1101112.
Bilangan oktal adalah bilangan berbasis 8, yang menggunakan angka 0 sampai 7. Contoh penulisan : 178.
Bilangan heksadesimal, atau bilangan heksa, atau bilangan basis 16, menggunakan 16 buah simbol, mulai dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F merupakan simbol untuk 10 sampai 15.
Contoh penulisan : C516.
Biner | Oktal | Desimal | Hexadesimal |
---|---|---|---|
0000 | 0 | 0 | 0 |
0001 | 1 | 1 | 1 |
0010 | 2 | 2 | 2 |
0011 | 3 | 3 | 3 |
0100 | 4 | 4 | 4 |
0101 | 5 | 5 | 5 |
0110 | 6 | 6 | 6 |
0111 | 7 | 7 | 7 |
1000 | 10 | 8 | 8 |
1001 | 11 | 9 | 9 |
1010 | 12 | 10 | A |
1011 | 13 | 11 | B |
1100 | 14 | 12 | C |
1101 | 15 | 13 | D |
1110 | 16 | 14 | E |
1111 | 17 | 15 | F |
Bilangan desimal yang akan dikonversi ke biner
Misalkan bilangan desimal yang ingin saya konversi adalah 2510.
Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :
25 : 2 = 12,5
Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :
25 : 2 = 12 sisa 1.
12 : 2 = 6 sisa 0.
6 : 2 = 3 sisa 0.
3 : 2 = 1 sisa 1.
1 : 2 = 0 sisa 1.
0 : 2 = 0 sisa 0
Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012
Konversi bilangan desimal ke oktal.
Proses konversinya mirip dengan proses konversi desimal ke biner, hanya saja kali ini pembaginya adalah 8. Misalkan angka yang ingin saya konversi adalah 3310. Maka :
33 : 8 = 4 sisa 1.
4 : 8 = 0 sisa 4.
0 : 8 = 0 sisa 0
Maka hasilnya adalah 41
Konversi desimal ke heksadesimal
Misalkan bilangan desimal yang ingin saya ubah adalah 24310. Untuk menghitung proses konversinya, caranya sama saja dengan proses konversi desimal ke biner, hanya saja kali ini angka pembaginya adalah 16. Maka :
243 : 16 = 15 sisa 3.
15 : 16 = 0 sisa F. —-> ingat, 15 diganti jadi F..
0 : 16 = 0 sisa 0
maka hasil konversinya adalah F316
Konversi bilangan biner ke desimal
Proses konversi bilangan biner ke bilangan desimal adalah proses perkalian setiap bit pada bilangan biner dengan perpangkatan 2, dimana perpangkatan 2 tersebut berurut dari kanan ke kiri bit bernilai 20 sampai 2n. Langsung saja saya ambil contoh bilangan yang merupakan hasil perhitungan di atas, yaitu 110012. Misalkan bilangan tersebut saya ubah posisinya mulai dari kanan ke kiri menjadi seperti ini.
1
0
0
1
1
Nah, saatnya mengalikan setiap bit dengan perpangkatan 2. Ingat, perpangkatan 2 tersebut berurut mulai dari 20 sampai 2n, untuk setiap bit mulai dari kanan ke kiri. Maka :
1 ——> 1 x 20 = 1
0 ——> 0 x 21 = 0
0 ——> 0 x 22 = 0
1 ——> 1 x 23 = 8
1 ——> 1 x 24 = 16 —> perhatikan nilai perpangkatan 2 nya semakin ke bawah semakin besar
Maka hasilnya adalah 1 + 0 + 0 + 8 + 16 = 2510.
Konversi bilangan biner ke oktal
Untuk merubah bilangan biner ke bilangan oktal, perlu diperhatikan bahwa setiap bilangan oktal mewakili 3 bit dari bilangan biner. Maka jika kita memiliki bilangan biner 1101112 yang ingin dikonversi ke bilangan oktal, langkah pertama yang kita lakukan adalah memilah-milah bilangan biner tersebut, setiap bagian 3 bit, mulai dari kanan ke kiri, sehingga menjadi seperti berikut :
110 dan 111
Sengaja saya buat agak berjarak, supaya lebih mudah dimengerti. Nah, setelah dilakukan proses pemilah2an seperti ini, dilakukan proses konversi ke desimal terlebih dahulu secara terpisah. 110 dikonversi menjadi 6, dan 111 dikonversi menjadi 7. Hasilnya kemudian digabungkan, menjadi 678, yang merupakan bilangan oktal dari 1101112
Konversi bilangan biner ke heksadesimal
misalnya saya ingin ubah 111000102 ke bentuk heksadesimal. Proses konversinya juga tidak begitu rumit, hanya tinggal memilahkan bit2 tersebut menjadi kelompok2 4 bit. Pemilahan dimulai dari kanan ke kiri, sehingga hasilnya sbb : 1110 dan 0010
Nah, coba lihat bit2 tersebut. Konversilah bit2 tersebut ke desimal terlebih dahulu satu persatu, sehingga didapat :
1110 = 14 dan 0010 = 2
Dengan demikian, hasil konversinya adalah E216.
Seperti tadi juga, gimana kalau bilangan binernya tidak berjumlah 8 bit? Contohnya 1101012? Yaa…Seperti tadi juga, tambahin aja 0 di depannya. Tidak akan memberi pengaruh apa2 kok ke hasilnya. Jadi setelah ditambah menjadi 00110101
Jumat, 05 Agustus 2011
GERBANG LOGIKA
v Gerbang AND
Outputnya akan bernilai “1”,jika kedua inputnya “1”.
A | B | Q |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
v Gerbang OR
Outputnya akan bernilai “1” jika salah satu inputnya bernilai “1”
A | B | Q |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
v Gerbang NOT (INVERTER)
Output akan selalu berlawanan dengan inputnya
A | B |
0 | 1 |
1 | 0 |
v Gerbang NAND (Not AND)
Output akan bernilai “0” jika kedua inputnya “1”
A | B | Q |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
v Gerbang NOR
Outputnya akan bernilai “1” jika kedua inputnya bernilai “0”
A | B | Q |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
v Gerbang XOR (Exclusive OR)
Outputnya akn bernilai “1” jika inputnya berbeda
A | B | Q |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
A | B | Ā | B | Ā.B | A.B | Ā.B + A.B |
0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
v Gerbang XNOR (Exclusive NOR)
Outputnya akan bernilai “1” jika inputnya sama
A | B | Q |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Nah, jadi itulah ilmu sistem konversi bilangan, semoga bermanfaat. Jika anda memiliki pertannyaan, silahkan ajuka pertanyaan anda di kolom komentar dan jangan lupa untuk menggunakan bahasa indonesia yang baik dan benar. Jangan lupa untuk mengunjungi postingan kami yang lain agar menambah pengetahuan kalian dan jangan lupa share ke teman-teman kalian juga agar mereka mendapatkan ilmu seperti anda juga.
Posting Komentar untuk "Konversi Bilangan Dan Gerbang Logika"